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SOLUTION TO PROBLEM SET 10
Solutions by P. Pebler

1 Purcell 6.26 A round wire of radius ro carries a current I distributed uniformly over the cross
section of the wire. Let the axis of the wire be the z axis, with ẑ the direction of the current. Show
that a vector potential of the form A = Ao(x2+ y2)ẑ will correctly give the magnetic field B of this
current at all points inside the wire. What is the value of the constant Ao?

The magnetic field is the curl of the vector potential.

B = ∇× A = 2Aoy x̂ − 2Aox ŷ

If we use plane polar coordinates in the x− y plane,

B = 2Aor(sinφ x̂ − cosφ ŷ) = −2Aor φ̂ .

We know that the magnetic field circles in the counterclockwise direction for a current coming out
of the page. We can find the magnitude from Ampere’s law.

2πrB =
4π
c
I
r2

r2
o

B =
2I
cr2

o

r

The vector potential A therefore works with the constant

Ao = − I

cr2
o

.

2 Purcell 6.28 A proton with kinetic energy 1016 eV (γ = 107) is moving perpendicular to the
interstellar magnetic field which in that region of the galaxy has a strength 3× 10−6 gauss. What
is the radius of curvature of its path and how long does it take to complete one revolution?

Magnetic forces do no work. They can only change the direction of the momentum. Because
the force is perpendicular to the velocity, we can instantaneously think about the motion as being
along a circle of some radius R. Because the field and velocity are perpendicular, the magnitude
of the force is

F =
evB

c
.

If this were a non-relativistic problem, we could find the radius R by equating the force withmv2/R.
In the relativistic case, this formula turns out to be correct with the replacement m → γm, but
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this is something that must be proved. If we wait a time ∆t, the momentum will swing through
some angle ∆θ, and |∆p| = p∆θ. (Please note that ∆p is not the same thing as |∆p|.) This angle
∆θ will also be the angle of the circle we go through in this time. Therefore, in the infinitesimal
limit ∆→ d, v = ωr. Consequently,

∣∣∣∣dpdt
∣∣∣∣ = p

dθ

dt
= pω =

pv

R
.

Equating this with the force,

R =
pc

eB
� γmc2

eB
=

107(1.5× 10−3 ergs)
(4.8× 10−10 esu)(3× 10−6 gauss)

= 1× 1019 cm .

The period is

τ =
2π
ω
=
2πR
v

� 2πR
c
= 2.1× 109 s .

3 Purcell 6.32 Two electrons move along parallel paths, side by side, with the same speed v. The
paths are a distance r apart. Find the force acting on one of them in two ways. First, find the force
in the rest frame of the electrons and tranform this force back to the lab frame. Second, calculate
the force from the fields in the lab frame. What can be said about the force between them in the
limit v → c?

In the particle rest frame, the field is just the Coulomb field and the force magnitude is e2/r2.
If we use the transformation formulas (14) in Purcell, the primed frame must be the particle rest
frame.

F =
1
γ

e2

r2
ŷ

To find the fields in the lab frame, it is easiest to transform them back from the rest frame
where

E′ = − e

r2
ŷ B′ = 0 .

Please note that most transformation formulas found in books assume that the primed frame is
moving in the positive x direction of the unprimed frame. If you wish to use these formulas verbatim,
you must choose your frames correctly. Here the particles are going to the right so the rest frame
is the primed frame. To switch back to the lab frame, we need the inverse of the equations (6.60)
in Purcell. We can accomplish this by simply switching the primes and the sign of β. Then

E‖ = E′
‖ = 0 ,

E⊥ = γ(E′
⊥ − β × B′

⊥) = γE′
⊥ = −γ e

r2
ŷ ,

B‖ = B′
‖ = 0 ,
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B⊥ = γ(B′
⊥ + β × E′

⊥) = −γβ e

r2
ẑ .

The force is then

F = (−e)E+ (−e)
c

v × B = γ
e2

r2
ŷ − γβ2 e

2

r2
ŷ = γ

e2

r2
(1− β2) ŷ =

1
γ

e2

r2
ŷ .

In the limit v → c, we see that F → 0.

4 Purcell 7.4 Calculate the electromotive force in the moving loop in the figure at the instant
when it is in the position there shown. Assume the resistance of the loop is so great that the effect
of the current in the loop itself is negligible. Estimate very roughly how large a resistance would be
safe, in this respect. Indicate the direction in which current would flow in the loop, at the instant
shown.

We first calculate the flux. We will define the positive direction to be into the page. The field
is that of a wire. The current is given in SI, so we must use SI formulas.

∫
B · da =

∫ x+L

x

µoI

2πr
w dr =

µoIw

2π
ln
x+ L

x

E = − d

dt
ΦB = −µoIw

2π
x

x+ L

(
v

x
− (x+ L)v

x2

)
=
µoIw

2π
Lv

x(x+ L)

E = 2.1× 10−5 V

By choosing into the page as positive for flux, we have also defined clockwise as the positive way
to go around the loop. Since E is positive, the induced current will be clockwise.

5 Purcell 7.9 Derive an approximate formula for the mutual inductance of two circular rings of
the same radius a, arranged like wheels on the same axle with their centers a distance b apart. Use
an approximation good for b 	 a.

From Purcell Eq. 6.41 (where a and b are interchanged relative to this problem) the field along
the axis of a ring is

Bz =
2πa2I

c(a2 + z2)3/2
.

We may use the information b 	 a, and approximate the z component of the field everywhere in
the second loop as

Bz =
2πa2I

c(a2 + b2)3/2
� 2πa2I

cb3
,
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so the flux is

ΦB =
2πa2I

cb3
πa2 =

2π2a4

cb3
I .

The induced emf is then

E = −1
c

d

dt
ΦB = −2π

2a4

c2b3
dI

dt
,

and the mutual induction is

M =
2π2a4

c2b3
,

in cgs units. If you use SI formulas this becomes

M =
µo

4π
2π2a4

b3
.

6 Purcell 7.11 Two coils with self-inductances L1 and L2 and mutual inductance M are shown
with the positive direction for current and electromotive force indicated. The equations relating
currents and emf’s are

E1 = −L1
dI1
dt

±M
dI2
dt

E2 = −L2
dI2
dt

±M
dI1
dt

.

Given that M is always to be taken as positive, how must the signs be chosen in these equations?
What if we had chosen the other direction for positive current and emf in the lower coil? Now
connect the two coils together as in b. What is the inductance L′ of this circuit? What is the
inductance L′′ of the circuit formed as shown in c? Which circuit has the greater self-inductance?
Considering that the self-inductance of any circuit must be a positive quantity, see if you can deduce
anything concerning the relative magnitudes of L1, L2, and M .

Imagine first that the current I2 is positive and increasing so that dI2/dt > 0. In this case the
magnetic field due to coil 2 will point up through coil 1. As the current I2 increases, the field it
creates will increase and the flux up through coil 1 will increase. By using Lenz’s law, we find we
need an induced current that will create a magnetic field that will oppose this change in the flux.
In this case, the field should point down through coil 1. To do this the induced current must flow
in the negative direction as it is defined for coil 1. Thus, the induced emf must be negative and we
need the negative sign. The same argument will tell you to choose the negative sign in the second
equation also. (You should go through it yourself however.)
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If the sign convention for coil 2 had been switched, the same argument would switch the sign
in both equations. (Do it yourself though.)
With the circuit in b, since both emf positive directions point in the same way, the total emf

across the new circuit is

E = E1 + E2 = −L1
dI1
dt

−M
dI2
dt

− L2
dI2
dt

−M
dI1
dt

.

We also have I = I1 = I2 so that

E = −(L1 + L2 + 2M)
dI

dt
,

and the self inductance is

L′ = L1 + L2 + 2M .

With the circuit in c, the sign conventions “conflict” so that

E = E1 − E2 = −L1
dI1
dt

−M
dI2
dt
+ L2

dI2
dt
+M

dI1
dt

,

but with I = I1 = −I2 so that

E = −(L1 + L2 − 2M)dI
dt

,

and the self inductance is

L′′ = L1 + L2 − 2M .

If the self inductance of a coil were negative, the circuit would be unstable – any change in current
would result in more current the same direction which would built indefinitely. Therefore we must
have L′′ > 0 and

M ≤ L1 + L2

2
.
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7 Purcell 7.14 A metal crossbar of mass m slides without friction on two long parallel conducting
rails a distance b apart. A resistor R is connected across the rails at one end; compared with R, the
resistance of bar and rails is negligible. There is a uniform field B perpendicular to the plane of the
figure. At time t = 0 the crossbar is given a velocity vo toward the right. What happens then? Does
the rod ever stop moving? If so, when? How far does it go? How about conservation of energy?

Let us assume the magnetic field is into the page, and let’s make that positive so that clockwise
is positive for the loop. The flux is then

ΦB = bxB .

The emf (in SI) is

E = − d

dt
ΦB = −bvB = IR ,

so the current is counterclockwise. The bar will feel a force due to the magnetic charges moving
through it. The force is

F = |I|L × B = −|I|bB x̂ .

We can solve for the motion using F = ma.

m
dv

dt
= −|I|bB = −b2B2

R
v

v(t) = voe
−b2B2t/mR

The bar never stops moving. It will approach the distance

d =
∫ ∞

0
voe

−b2B2t/mRdt =
mRvo

b2B2
.

The lost kinetic energy is dissipated by the resistor.

I =
b

B
Rv

U =
∫ ∞

o
I2Rdt =

∫ ∞

o

b2B2

R
v2
oe

−2b2B2t/mR =
b2B2

R
v2
o

mR

2b2B2
=
1
2
mv2

o
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8 Purcell 7.16 The shaded region represents the pole of an electromagnet where there is a strong
magnetic field perpendicular to the plane of the paper. The rectangular frame is made of 5 mm
diameter aluminum. suppose that a steady force of 1 N can pull the frame out in 1 s. If the force is
doubled, how long does it take? If the frame is made of 5 mm brass, with about twice the resistivity,
what force is needed to pull it out in 1 s? If the frame were 1 cm diameter aluminum, what force
is needed to pull it out in 1 s? Neglect inertia of the frame and assume it moves with constant
velocity.

If we assume a constant velocity, the force necessary to pull out the loop will be equal in
magnitude to the magnetic force on the loop. We will ignore signs here. The net force will be on
the left wire of the frame.

F = |I|hB
The magnetic flux will be something like Φ = LxB, where x is the length of loop in the field. Then
the emf is

|E| =
∣∣∣∣− d

dt
Φ

∣∣∣∣ = hvB .

The current is |I| = |E|/R and the resistance is R = ρL/A = ρL/πr2, where L is the total length
of the loop and r is the radius of the wire of which it is made.

F = hBhBv
A

ρL
∝ vr2

ρ

If the force is doubled, the speed doubles and it takes half the time or 0.5 s. If the resistivity
doubles with the same speed, the force is halved so that F = 1 N . If the radius doubles with the
same speed, the force is four times as great or 4 N .
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